大红鹰娱乐网基于海量中小学试题库建立的在线大红鹰娱乐系统
当前位置:手动大红鹰娱乐 >初中数学 >按章节
时间 使用次数
过滤已使用的试题
防超纲选题
  • 1. 某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有{#blank#}1{#/blank#}人.

  • 1. 分解因式: ={#blank#}1{#/blank#}.
  • 1. 已知二次函数 ,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是(   )
    A . 有最大值﹣1,有最小值﹣2 B . 有最大值0,有最小值﹣1 C . 有最大值7,有最小值﹣1 D . 有最大值7,有最小值﹣2
  • 1. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.

    1. (1)求证:△BDE≌△CDF;
    2. (2)当AD⊥BC,AE=1,CF=2时,求AC的长.
  • 1. 小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.

    请帮助小波解决“温故”、“推理”、“拓展”中的问题.

    1. (1)温故:如图1,在△ 中, 于点 ,正方形 的边 上,顶点 分别在 上,若 BC=a,AD=h,求正方形 的边长(a,h表示).
    2. (2)操作:如何能画出这个正方形PQMN呢?

      如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作,先在AB上任取一点 ,画正方形 ,使 边上, 在△ 内,然后连结 并延长交 于点N,画 于点 于点 于点 ,得到四边形P

      推理:证明图2中的四边形 是正方形.

    3. (3)拓展:小波把图2中的线段BN称为“波利亚线”,在该线截取 ,连结 (如图3).当∠ =90°时,求“波利亚线”BN的长(用a、h表示).
  • 1. 某农作物的生长率 与温度 ( )有如下关系:如图,当10≤ ≤25 时可近似用函数 刻画;

    当25≤ ≤37 时可近似用函数 刻画.

    1. (1)求 的值.
    2. (2)按照经验,该作物提前上市的天数 (天)与生长率 满足函数关系,部分数据如下:

      生长率

      0.2

      0.25

      0.3

      0.35

      提前上市的天数  (天)

      0

      5

      10

      15

      求:①求 关于  的函数表达式;

      ②请用含 的代数式表示

      ③天气寒冷,大棚加温可改变农作物生长速度.在大棚恒温20℃时每天的成本为100元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若加温到25<t≤37,由于要采用特殊方法,成本增加到400元/天,问加温到多少度时增加的利润最大?并说明理由。(注:农作物上市售出后大鹏暂停使用)

  • 1. 在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B 两小区分别有 500 名居民参加了测试,社区从中各随机抽取50 名居民成绩进行整理得到部分信息:

    【信息一】A 小区 50 名居民成绩的频数直方图如下(每一组含前一个边界值,不含后一个边界值):

    $7ZOT5MI

    【信息二】上图中,从左往右

    第四组的成绩如下

    【信息三】A、B 两小区各 50 名居民成绩的平均数、中位数、众数、优秀率(80 分及以上为优秀)、方差等数据如下(部分空缺):

    $P09KH9L(E16K2

    根据以上信息,回答下列问题:

    1. (1)求A小区50名居民成绩的中位数.
    2. (2)请估计A小区500名居民成绩能超过平均数的人数.
    3. (3)请尽量从多个角度,选择合适的统计量分析 A,B 两小区参加测试的居民掌握垃圾分类知识的情况.
  • 1. 如图,AB与CD相交于点O.AB=CD.∠AOC=60°,∠ACD+∠ABD=210°,则线段AB、AC、BD之间的等量关系式为{#blank#}1{#/blank#}.

  • 1. 将—副三角板按如图所示的位置摆放在直尺上,则∠1的度数为(     )。

    A . 60° B . 65° C . 75° D . 85°
  • 1. 如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是(    )

    A . B . C . D .
上一页 1 2 3 4 5 下一页 共1000页